perform.GO.enrichment.Rd
Performs gene ontology enrichment for individual cluster differential expression results.
perform.GO.enrichment(
result,
whichOnto = "BP",
feasibleGenes = NULL,
mapping = "org.Hs.eg.db",
ID = "symbol",
nodeSize = 5,
algorithm = "classic",
statistic = "ks",
rank.cutoff = 0.001,
gene.col = "gene",
pval.col = "p_val",
cluster.col = "cluster",
n.top.pathways = 10
)
A database containing the differential expression results
Character. specifying one of the three GO ontologies, namely: "BP", "MF", "CC". Default = 'BP'
Character vector. vector containing a subset of gene identifiers. Only these genes will be used to annotate GO terms. Default value is NULL which means that there are no genes filtered.
Character. The name of the Bioconductor package containing the gene mappings for a specific organism. For example: mapping = "org.Hs.eg.db".
Character. Specify the gene identifier to use. Currently only the following identifiers can be used: c("entrez", "genbank", "alias", "ensembl", "symbol", "genename", "unigene")
Numerical. Minimum number of genes required to consider a GO term. Default = 5
Character. Which algorithm to use when testing for significant GO terms, options: 'classic', 'elim', 'weight', 'weight01', 'lea', 'parentchild'. Default = 'classic'
Character. Which statistic to use when testing for significant GO terms, options: 'fisher', 'ks', 't', 'globaltest', 'sum', 'ks.ties'. Default = 'ks'
Numerical. Which cut off to apply for pathway significance, this value will change according to the statistic applied. Default = 0.001
Character. Which column name within differential expression results contains the genes. Default = 'gene.col'
Character. Which column name within differential expression results contains the p values. Default = 'p_val'
Character. Which column name within differential expression results contains the cluster assignments. Default = 'cluster'
Numerical. How many top pathways per group should be retained. Default = 10
A dataframe containing the top enriched pathways for each cluster
SCT_DE <- perform.seurat.diffexp.all(object = object, assay = 'SCT', test = 'MAST', identity = object@sample_metadata$celltype, latent.vars = 'original.project')
#> Error in perform.seurat.diffexp.all(object = object, assay = "SCT", test = "MAST", identity = object@sample_metadata$celltype, latent.vars = "original.project"): could not find function "perform.seurat.diffexp.all"
SCT_DE_GO <- perform.GO.enrichment(result = SCT_DE)
#> Error in is.data.frame(result): object 'SCT_DE' not found
plot.GO.output(result = SCT_DE_GO) + ggplot2::ggtitle(label = 'SCT')
#> Error in plot.GO.output(result = SCT_DE_GO): object 'SCT_DE_GO' not found