A new method-assay is produced. Raw counts are normalised and HVGs identified using Scran

perform.scran(
  object,
  assay = "RAW",
  slot = "counts",
  batch = NULL,
  vars.to.regress = NULL,
  do.scale = TRUE,
  do.center = TRUE,
  new.assay.suffix = "",
  n.genes = 1500,
  max.cluster.size = 1000,
  center_size_factors = TRUE,
  verbose = FALSE,
  seed = 1234,
  ...
)

Arguments

object

IBRAP S4 class object

assay

Character. String containing indicating which assay to use

slot

Character. String indicating which slot within the assay should be sourced

batch

Character. Which column in the metadata defines the batches. Default = NULL

vars.to.regress

Character. Which column in the metadata should be regressed. Default = NULL

do.scale

Boolean. Whether to scale the features variance. Default = TRUE

do.center

Boolean. Whether to centre features to zero. Default = TRUE

new.assay.suffix

Character. What should be added as a suffix for SCRAN

n.genes

Numerical. Top number of genes to retain when finding HVGs. Default = 1500

max.cluster.size

Numerical. When performing quickCluster, what is the maximum size the clusters can be. Default = 1000

center_size_factors

Boolean Should size factor variance be centred. Default = TRUE

verbose

Logical Should function messages be printed?

seed

Numerical What seed should be set. Default = 1234

...

Arguments to pass to Seurat::ScaleData

Value

Produces a new 'methods' assay containing normalised, scaled and HVGs.

Examples


object <- perform.scran(object = object, 
                        assay = 'RAW', 
                        slot = 'counts', 
                        vars.to.regress = 'RAW_total.counts', do.scale = T)
#> Error in is(object = object, class2 = "IBRAP"): object 'object' not found