Performs TPM normalisation, scran hvg selection, scaling and variance stabilisation and regression.

perform.tpm(
  object,
  assay = "RAW",
  slot = "counts",
  n.genes = 1500,
  do.scale = FALSE,
  do.center = TRUE,
  vars.to.regress = NULL,
  new.assay.suffix = "",
  biomart.dataset = "hsapiens_gene_ensembl",
  gene.lengths = NULL,
  verbose = FALSE,
  seed = 1234,
  ...
)

Arguments

object

IBRAP S4 class object

assay

Character. String containing indicating which assay to use

slot

Character. String indicating which slot within the assay should be sourced

n.genes

Numerical. Top number of genes to retain when finding HVGs. Default = 1500

do.scale

Boolean. Whether to scale the features variance. Default = TRUE

vars.to.regress

Character. Which column in the metadata should be regressed. Default = NULL

new.assay.suffix

Character. What should the new assay be called. Default = 'SCRAN'

biomart.dataset

Character. Which biomart dataset should be used, this normally corresponds with the species in question, default = 'hsapiens_gene_ensembl'. Check available datasets by performing the following. ensembl <- biomaRt::useEnsembl(biomart = "genes", dataset = "hsapiens_gene_ensembl"), then biomaRt::listDatasets(ensembl)

gene.lengths

DataFrame. A dataframe containing two columns, external_gene_name and transcript_length.

verbose

Logical Should function messages be printed?

...

Arguments to pass to Seurat::ScaleData

do.centre

Boolean. Whether to centre features to zero. Default = TRUE

Value

Produces a new 'methods' assay containing normalised, scaled and HVGs.

Examples


object <- perform.scanpy(object = object, 
                         vars.to.regress = 'RAW_total.counts', do.scale = T)
#> Error in perform.scanpy(object = object, vars.to.regress = "RAW_total.counts",     do.scale = T): unused argument (do.scale = T)