Generates slingshot trajectory inference on the defined reduction and clustering

perform.slingshot.trajectory(
  object,
  reduction,
  assay,
  clust.method,
  column,
  start.clus = NULL,
  end.clus = NULL,
  verbose = FALSE,
  seed = 1234,
  ...
)

Arguments

object

IBRAP S4 class object

reduction

Character. String defining which reduction to supply to the clustering algorithm. Default = NULL

assay

Character. String containing indicating which assay to use

clust.method

Character. Which cluster method should be used utilised from clustering results, if `'metadata'` is supplied, you will access the metadata.

column

Character. Which column within the isolated clust.method should be used to define cell type annoation.

start.clus

Character. Which cluster should start the trajectory, if NULL then slingshot will attempt to discover this. Default = NULL

end.clus

Character. Which cluster should end the trajectory, if NULL then slingshot will attempt to discover this. Default = NULL

verbose

Logical Should function messages be printed?

seed

Numeric. What should the seed be set as. Default = 1234

...

arguments to be passed to slingshot::slingshot

Value

A SingleshotDataSet class results object containing cellular lineages/curves

Examples


traj_res <- perform.slingshot.trajectory(object = object, reduction = 'pca_umap', 
                                         assay = 'SCT', clust.method = 'metadata', 
                                         column = 'celltype')
#> Error in is(object, "IBRAP"): object 'object' not found
                                         
plot.slingshot(result = traj_red, object = traj, assay = 'SCT', relevant = F, Pseudotime = T)
#> Error in is(object = result$assignments, "SlingshotDataSet"): object 'traj_red' not found